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Abstract 

The r61e of the average Coulomb potential (mean 
inner potential), q~o, in electron diffraction and 
methods for its calculation are reviewed. "From an 
examination of model and real crystals, it is shown 
that a prescription of Becker & Coppens [Acta Cryst. 
(1990), A46, 254-258] for calculating the average 
potential from X-ray data may lead to incorrect 
results because of an artificial surface-dipole term 
that is independent of crystal size. It is suggested that 
measurements of ~0 for crystals with adsorbed 
monolayers could be used to measure the density and 
sign of a real surface dipole moment. Published data 
for MgO, silicon and aluminium show that q~o is very 
sensitive to bonding effects when atoms combine to 
form crystals. The often-reported expansion of the 
silicon valence shell deduced from pseudo-atom 
refinements of X-ray diffraction data is shown to be 
an artifact of the refinement method, as recent accu- 
rate measurements of q00 for silicon instead require a 
contraction of the outer part of the valence shell. It is 
concluded that X-ray diffraction data alone do not 
allow a determination of q00. However, ~o provides 
information about valence-electron distributions that 
is not available in practice from X-ray data and 
places powerful constraints on pseudo-atom 
refinements. 

I. Introduction 

It is widely accepted that, whereas X-ray diffraction 
techniques probe the electronic part of the total 
ground-state charge density p(r) in a crystal, high- 
energy electrons are diffracted by the electrostatic 
(Coulomb) potential ~p(r), which is related to p(r) by 
Poisson's equation. Considerable interest attaches to 
reconciliation of the results of these two types of 
experiment. Recently, attention has been focused on 
the average electrostatic potential (also called the 
'mean inner potential'), @o, which can be determined 
by electron interferometry (Spence, 1993). In particu- 
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lar, the question has been raised as to whether q~o 
can be determined from the results of X-ray experi- 
ments (Becker & Coppens, 1990). 

That the subject is not entirely uncontroversial is 
illustrated by the fact that it is common in solid-state 
physics to set the average potential of a periodic 
charge distribution to zero (see §3 below). In early 
work that attempted to correlate electron diffraction 
data and X-ray diffraction data, the average 
potential was also set equal to zero (e.g. Laschkarew 
& Tschaban, 1935). A similar practice is sometimes 
followed by crystallographers (e.g. Spackman & 
Stewart, 1981) interested in mapping out the elec- 
trostatic-potential distributions in crystals. In a 
recent theoretical study of crystalline MgO 
(Saunders, Freyria-Fava, Dovesi, Salasco & Roetti, 
1992), the zero of potential was chosen to correspond 
to that at a point midway between the Mg and O 
atoms. 

Confusion also sometimes arises because 
electronic-band-structure theorists use the term 
'potential' to include an exchange-correlation 
potential in addition to the electrostatic (Coulomb or 
Hartree) potential. Many authors use the symbol Vo 
for q~o but, since it is also common to use the symbol 
V for a related quantity with different dimensions, it 
seems better to avoid that usage. In real crystals, q~o 
is a positive quantity, usually measured in V. The 
potential energy of an electron caused by this 
potential is eq~o (where e is the electron charge - e )  
and is negative. 

In this paper, we argue that the average potential 
in a finite crystal is a well defined quantity, but that 
extending the concept to an infinite crystal can lead 
to incorrect conclusions. We also show that c/' 0 con- 
tains valuable information about bonding effects 
that occur when atoms combine to form crystals. 
Accordingly, after some preliminary remarks, we 
examine some prescriptions for calculating the aver- 
age potential and apply them first to model systems 
and then to MgO, silicon and aluminium, for which 
appropriate experimental and/or theoretical data are 
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available. As the subject has a long history, we first 
review some of the key early work, which appears to 
be in danger of being forgotten. 

An electron entering a crystal is accelerated by the 
mean inner potential (450) and therefore undergoes a 
phase shift with respect to a reference beam in a 
vacuum. For this reason, 450 contributes to a 'refrac- 
tive index' for electrons different from unity and 
played an important role in the early history of 
electron diffraction and quantum mechanics. 
Because the directions of Bragg maxima in reflection 
electron diffraction (RED) experiments depend on 
refraction, the experimental confirmation of de 
Broglie's matter-wave hypothesis by Davisson & 
Germer (1927) required a knowledge of 450. Lacking 
this information, they were, therefore, unable to 
index the reflections in their famous RED patterns. 
The slightly later high-energy work of Thomson & 
Reid (1927) was not so affected because they used 
the transmission geometry. 

With its importance recognized, the first theory of 
the mean inner potential was given by Bethe (1928), 
who expressed 450 in terms of the second moment of 
the charge density [equation (9) below] for spherical 
atoms. Values of 450 were subsequently measured for 
many crystals in Europe and in Japan by electron 
optical methods and a summary of early results was 
given by Thomson & Cochrane (1939). A summary 
of the many measurements made on MgO up to 1973 
was given by Yada, Shibata & Hibi (1973) and a 
review of recent data was given by Spence (1993). It 
should be noted that many of the early results have 
large uncertainties associated with factors such as 
uncertainties in sample thickness and surface con- 
tamination. Electron-holography measurements on 
cleavage wedges, which avoid many of the systematic 
errors in previous work, have recently been made 
(Gajdardziska-Josifovska, McCartney, de Ruijter, 
Smith, Weiss & Zuo, 1993) and accuracies of the 
order of 1% are possible. Representative results, to 
which we refer later, are given in Table 1. Note that 
these experiments are transmission experiments so 
they do not sample only surface layers of the crystal 
but instead measure a bulk property. In Table 1, we 
also give the value of 45o calculated for a super- 
position of free atoms (the pro-crystal discussed 
below); note that these are substantially higher than 
the crystal values. 

Rosenfeld (1929) first related 45o to the diamag- 
netic susceptibility and this relationship has since 
been used to estimate 45o (Miyake, 1940) and the 
electron scattering factor at zero scattering angle 
(Ibers, 1958). Bethe's expression for 45o was recast in 
the form of a sum over certain X-ray structure 
factors by Shinohara (1932) [see also Miyake (1940)]. 
This idea, that 45o forms a kind of sum rule on X-ray 
structure factors, is discussed briefly in Appendix A. 

Table 1. The mean Coulomb potential in crystals (in 
V) measured (Gajdardziska-Josifovska et al., 1993) by 

electron holography 

The measured values are corrected for multiple scattering. Values 
calculated for a pro-crystal of  noninteracting atoms are given for 
comparison. 

Crystal Pro-crystal 

Silicon 9.26 (8) 13.61 
MgO ! 3.01 (8) 18.43 
GaAs 14.53 (17) 15.32 
PbS 17.19 (12) 

The proposal that 450 should approximately equal 
the sum of the magnitudes of the Fermi kinetic 
energy and the work function in photo-emission was 
apparently also first made by Bethe (1928) [see also 
Tamm (1932) and Kisliuk (1961)]. A review of the 
theory of the work function and its relationship to 
450 has been given by Lang & Kohn (1971). 

It is important to recognize that in high-energy 
(>50 kV) electroh diffraction (HEED) it is well 
established (Rez, 1978) that exchange between the 
beam electrons and the crystal-electrons is negligible. 
This implies (Yoshioka, 1957) that the total wave 
function g'(r,r/), dependent on the high-energy elec- 
tron coordinates r and the crystal-electron coordi- 
nates ri, can be written as a product of a 
crystal-electron wave function grc and a beam- 
electron wave function ~b: a/t(r,ri)= attc(ri)Xtrb(r). In 
this (excellent) approximation, the potential seen by 
the beam electron is just the Coulomb potential in 
the crystal (the Hartree potential) and does not 
include exchange and correlation terms. The situa- 
tion is quite different in low-energy electron diffrac- 
tion (LEED) where estimates of 450 are subject to a 
number of important corrections (exchange and cor- 
relation effects) not present at higher beam energies. 

We wish to point out also that Bragg's law fails 
under conditions of strong multiple electron scat- 
tering. Thus, 'dynamical shifts' occur in the positions 
of Bragg peaks for both transmission and reflection 
electron diffraction (Spence & Zuo, 1992). The 
Renninger effect (e.g. Chang, 1987) is the corre- 
sponding X-ray multiple scattering effect. These 
shifts depend in general on all the strongly excited 
electron structure factors, including that for zero- 
angle scattering, so that it is no longer possible to 
treat the refractive index for electrons simply in 
terms of 450. A treatment of the Bloch-wave Bethe 
theory for reflection high-energy electron diffraction 
(RHEED), with emphasis on the problem of 
determining 45o, is given by Stern & Gervais (1969). 
In this work, a value of 450- 20 V is obtained for 
tungsten, for example, which is in reasonable 
agreement with the value of 23.4 V obtained by the 
analysis of Kikuchi patterns at higher voltages by 
Gaukler & Schwarzer (1971). 
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In what follows, we discuss some general charge 
distributions but point out that a charge distribution 
in a real crystal is far from arbitrary, being, to a very 
good first approximation, that of a superposition of 
free spherical atoms. Following common practice, we 
refer to this approximation as the 'pro-crystal'. An 
even better approximation is that of a superposition 
of pseudo-atoms [e.g. Dawson (1967), Stewart (1973) 
and Hansen & Coppens (1978)] whose charge distri- 
butions are refined to match observed structure 
factors. 

2. Charge density and potential and their Fourier 
representations 

In this work, for reasons that will become apparent, 
we deal only with finite charge distributions. We 
start from the definition that the potential resulting 
from an element of charge q at a distance r from the 
charge is ~ = q/r, so that ~--> 0 as r ~ ~ ;  this defines 
the zero of potential. The potential at a point R 
resulting from a finite charge distribution p(r), such 
that fp( r )dr  = 0, is then the volume integral over all 
of direct space r: 

qffR) = f p(r)/lr - Rid1". (1) 

The Fourier transforms of p(r) and qffr) are 

f (k)  = fp(r)  exp (27rik • r)d~-, (2) 

v(k) = f~o(r) exp (2wik • r)d~-. (3) 

These quantities are related by Poisson's equation 
in reciprocal space k: 

v(k) = f ( k ) /  ~rk 2. (4) 

In particular, 

v(0) = fqffr)dz = lim {(f(k))/~'k2}.  (5) 
k- , -0  

As v(0) is a scalar quantity, we replace f (k)  in (4) 
by its orientational average ( f ( k ) )  in (5) (c f  Becker & 
Coppens, 1990). From (2), we have, explicitly, with 
spherical polar coordinates k, 0, q~: 

~- 2~r 

(f(k)) = (1/4~-)f f fp( r )exp  (2rrik • r)dr  d~, sin0 dO 
0 o 

~- 2~- 

= ( 1 / 4 ~ ) f p ( r ) f  f exp (2~'ik • r)d~0 sin0 dO d r  
o o 

= fp(r)[sin (2rrkr)/27rkr]dr. (6) 

Using the expansion for small x of sin (x) /x  = 
1-x2 /6  + O(x 4) and recalling that f p ( r ) d r = 0 ,  we 
get, for small k, 

( f ( k ) )  = ( -  27r2k2/3)f r2p(r)dr + O(k4). (7) 

And thus, from (5), 

v(0) = ( -  27r/3)f r2p(r)dz. (8) 

We see that v(0) is simply related to the second 
moment of p(r). We note also that (8) applied to an 
atom of atomic number Z (noting that electron 
charge is negative) gives the celebrated Bethe (1928) 
formula: 

v(O) = 27rZ(r2)/3. (9) 

It is also useful to observe that v(0) is simply 
related to the curvature of ( f ( k ) )  at the origin. 
Specifically, from (5), we have, directly, a result we 
refer to later: 

v(O) = ( -  1/2~r)[dZ(f(k))/dk2]k= o. (10) 

3. The potential in a finite crystal 

We now turn to a discussion of a finite crystal (or 
crystallite). A finite element of an infinite lattice Z(r) 
may be represented as z ( r )=  Z(r)s(r), where s(r), 
equal to unity inside the crystallite and zero outside, 
is a shape function. Now we make a crystallite by 
associating a basis with each of the finite number of 
lattice points. A given charge distribution in the 
interior of the crystallite can be described by an 
infinite number of different bases. An important 
result, apparently first established by Harris (1975), 
is that, provided the basis has zero dipole and quad- 
rupole moments, the potentials calculated using dif- 
ferent bases differ only by a constant amount 
everywhere inside a crystallite of arbitrary shape. In 
what follows, we demonstrate this result for two 
particularly important bases, although a more gen- 
eral treatment is straightforward (e.g. Saunders et al., 
1992). We then argue that one of these bases is the 
appropriate choice for a real crystal and that the 
potential calculated on this basis has the correct 
average, ~0. 

The first choice of basis is the contents of a unit 
cell pc(r) and the second choice is a unit cell of 
pseudo-atoms p~,(ri), where ri is the position of the 
ith pseudo-atom in the unit cell. Note that the 
pseudo-atom charge densities may, and in general 
will, extend beyond the boundary of the unit cell. 
The two representations of the charge density are 
given by the convolutions 

pl(r) = z(r) • pc(r), (1 la) 

p2(r) = z(r) • ZPai (r - r i ) .  (1 lb) 
i 

These charge densities are identical in an infinite 
crystal but will differ at the surfaces of a crystallite. 

Let fk) be the Fourier transform of z(r). ((0) is 
just the number N of lattice points in the crystallite. 
Likewise, let fc(k) and fa,(k) be the Fourier trans- 
forms of pc(r) and pai(r), respectively. The Fourier 
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transforms of the charge distributions in (11) are 

Fl(k) = ((k)f~(k), (12a) 

F2(k) = ( (k)Y . f~ ,{k)exp(2rr ik ' r3 .  (12b) 
i 

The Fourier transforms of the potential due to the 
two charge distributions are 

Vl(k) = ((k)f~Oc)/Trk 2, (13a) 

V2(k) = ((k)Zf~,(k) exp (2rrik" ri)/TTk 2. (13b) 
i 

In particular, recalling that ((0) = N, 

VI(0) = Nvc(O), (14a) 

V2(0) = NYv~,(O). (14b) 
i 

For a large (neutral) crystallite made up of N unit 
cells of volume ~O and for which the potential falls 
rapidly to zero outside, the average potential in the 
crystallite is V(O)/NO: 

0o, = vc(O)/O, (15a) 

( ~ 0 2  = ZVai(O)/~'~" ( 1 5 b )  
i 

From (8) we finally get 

O01 = ( -  2rr/3,O) f r2pc(r)dr, (16a) 
cell  

~)02= (--27"l'/3~)~i[pseudf_atomr2pai(r)dF ]. (16b)  

The first of these prescriptions for calculating the 
average potential is equation (29) of Becker & 
Coppens (1990), the second is implied in their equa- 
tion (38). It is important to notice, however, that the 
Becker & Coppens results were derived for an 
'infinite' crystal, whereas our treatment is for a finite 
crystallite of arbitrary shape. We now first show, 
using simple examples, that the two expressions (16a) 
and (16b) can lead to very different results and then 
analyze the reasons for the difference. 

Consider a crystallite composed of point nuclei of 
charge Z neutralized by a spherical Gaussian distri- 
bution of negative charge with (r 2) = b 2= 3'r/2/2 at 
each lattice point. Specifically, 

p~(r) = Z[6(r)-(r/rr l /2) -3exp( - r / r / )2] ,  (17) 

~0a(r) = Z erfc (~r)/r (18) 

Va(0 ) = ZT'/-'J7 2. (19) 

In (18), erfc (z)= 1 - e r f ( z )  is the complementary 
error function. 

The crystallite is now composed of pseudo-atoms 
such as these centered on the points of a primitive 

cubic lattice parameter a. We have, immediately, by 
substitution of (19) into (15b), 

tP02 = Z77"~72/a 3. (20) 

As b approaches infinity, the negative charge den- 
sity in the crystal approaches the constant value 
- Z / a  3 and we have a lattice of point positive 
charges neutralized by a uniform negative charge; an 
abstraction frequently encountered in solid-state 
physics ('Wigner crystal'). Note that in the same 
limit, (20) shows that the average potential will go to 
infinity. This observation led to the conclusion that 
the average potential in a periodic charge distribu- 
tion must be zero (Fuchs, 1935; Ewald & Juret- 
schke, 1953; Tosi, 1964) [but see also von Laue 
(1948)]. In fact, of course, such a charge distribution 
is unphysical and would only be found as an infinite 
energy excitation of a crystal. 

In this limit (b---, oo), the charge density in the unit 
cell is Z[~(r) - 1/a 3] and we find from (16a) that O01 
becomes independent of r/: 

OOl = Zrr/6a. (21) 

In the other limit, that of b approaching zero, OOl 
= tP02 = Z'a'~72/a 3 and it is clear that the two bases 
only give the same result for a crystallite made up of 
nonoverlapping pseudo-atoms. Fig. 1 shows the ratio 
of OOl to 002 calculated from (16) as a function of 
b/a. The two methods only agree for b [ = (r2) 1/2] less 
than about a/4. Note for future reference that the 
charge distribution in a unit cell is taken as that in a 
unit cell of an infinite crystal. 

The question naturally arises of how important the 
distinction between O01 and 002 is for real atoms. 
Fig. 2 shows the ratio 0Ol/0O2 for primitive cubic 
pro-crystals of sodium, magnesium, silicon and 
oxygen as functions of the lattice parameter a. It can 
be seen that the two values converge only for rather 
large lattice constants for the electropositive atoms. 
For these calculations (and all other calculations of 
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Fig. 1. The ratio 00/002 calculated [from (16)] for a cubic crystal 
of Gaussian pseudo-atoms as a function of the ratio of the 
lattice parameter a and the r.m.s, width of the Gaussians b. 
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atomic properties reported below) we have used the 
atomic wave functions of Clementi & Roetti 0974). 

It is important to recognize that fc(k) and fa(k) are 
only equal for k = H (a reciprocal-lattice vector) and 
likewise that f~(0)=f~(0)= 0. Fig. 3 shows f~(k) and 
fa(k) along the direction [kx,0,0] for a cubic crystal of 
Gaussian pseudo-atoms for a particular choice of 
width parameter r / =  0.2a. The curves intersect only 
at reciprocal-lattice vectors and, in particular, have 
different curvatures at the origin. 

For H a  0, we also have vo(H)= va(H), but v~(0) 
and Va(0) will not be equal as they will depend on the 
curvatures offo(k) and fa(k) at the origin [(10)]. Fig. 
4 shows v~(k) and va(k) for the same crystal as in Fig. 
3. The curves intersect for nonzero reciprocal-lattice 
vectors so that fo(H) = f a ( n )  but vc(0) ~ v~(0). 

If  one does a Fourier synthesis off(H),  

p(r) = (1 /~2)Xf (n )exp  ( -  2~l~I.  r), (22) 
H 

the same charge density in a unit cell of an 'infinite' 
crystal will be obtained using eitherfo(k) orfa(k). On 
the other hand, if one does a Fourier synthesis of 
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Fig. 2. The ratio q%/q~o2 calculated [from (16)] for a cubic 
pro-crystal of Hartree-Fock atoms as a function of the lattice 
parameter a (A). 

v(H), including v(0), 

~o(r) = (1/f2)~'v(n) exp ( -  27rz~I • r), (23) 

potential distributions will be obtained that are the 
same except for a constant difference d@0 = [vc(0) - 
Va(0)]/~. We now show that A~  o is a surface contri- 
bution that arises from the different ways of termi- 
nating the crystal and is independent of its size (or 
shape), so one cannot go to the limit of infinite size 
to evaluate the potential distribution in a crystal in 
this way. We should mention that this conclusion 
was reached earlier by Kleinman (1981) for a Wigner 
crystal. 

4. The surface dipole contribution to ~o 

To demonstrate the effect of surface charges on ~o in 
a crystallite, we use an example of a crystallite 
having only surface charges. The total charge distri- 
bution is still described by the methods of §3, i.e. we 
still associate a charge distribution with every point 
in a finite element of a lattice. Specifically, we now 
use as basis for a crystallite a distribution of charge:* 

6 

p(r) = 6qps(r) - Z qps(r - ri), (24) 
i = l  

where ps(r) is a normalized and spherically sym- 
metric charge distribution [f~(0)= 1] and the ri are 
_+ a,0,0; 0, -+ a,0; 0,0, _ a. The Fourier transform of 
this basis is 

6 

f(k) = 6qf~(k) - ~" qfs(k) exp ( -  2~'zk" ri). (25) 
i = l  

It may readily be verified that (5) and (8) give the 
same result: 

v(0) = 4"n'qa 2. (26) 

* We are grateful to O. F. Sankey for suggesting this example; 
an octahedral distribution of point charges was discussed by 
Harris (1975). 
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Fig. 3.f.(k)('cell') andfa(k)( 'atom')  along kx,0,0 for a cubic crystal 
(lattice parameter a) of  Gaussian pseudo-atoms with "q = 0.2a. 
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Fig. 4. v,.(k)('cell') and va(k)('atom') in units of  ea 2 along k~,0,0 for 
the same crystal as in Fig. 3. 
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Note that the actual functional form of ps(r)  is 
irrelevant to v(0). 

If we make an infinite crystal by associating the 
octahedral basis with every lattice point of a primi- 
tive cubic lattice of cell edge a, then associated with 
every lattice point rz is a charge density 6qp(r t ) -  
6qp(rt) = 0, i.e. we have a null crystal for which one 
would naturally assign ~o = 0. On the other hand, if 
we make a finite crystal with the same basis we find 
[cf. (15b)] 

~o = v ( O ) / ~  = 4rrq /a .  (27) 

This average potential is independent of crystallite 
size or shape and, as the charge is zero everywhere 
inside and outside the crystallite, must be due to the 
residual charges on the surface. Fig. 5 shows a layer 
of a crystallite built up from the octahedral basis and 
shows that there is a dipole layer at the surface. The 
shaded area in the figure represents a square prism of 
side a normal to one of the surfaces and might be 
taken to represent the trajectory of an electron 
traversing the crystal. 

It is again convenient for numerical work to use 
Gaussian charge distributions (but now without a 
neutralizing point charge, as in the pseudo-atoms of 
§3) to construct the overall-neutral octahedral basis. 
Specifically, we use in (24) 

ps(r) = (TI'jT1/2) -3  exp ( -  r/r/)  2, (28) 

with the properties f(0) = 1, ~o(r) = erf (r /r l ) / r ,  
~p(0) = 2/'rri/Z'r/. 

In Fig. 6, we show the potential averaged over the 
area of a prism of side a as a function of distance 
from the center for a crystallite constructed from the 
octahedral basis employing such Gaussians. It is to 
be noted that inside the crystallite the potential is 
very nearly constant, is effectively independent of the 

parameter r / and  drops very close to zero outside the 
dipole layer. 

This result is not entirely unexpected. For a charge 
distribution consisting of an arbitrary closed surface 
with constant dipole-moment density D on the sur- 
face, it can be shown (e.g.  Jackson, 1975) that the 
electrostatic potential everywhere inside is larger by 
4rrD than the potential outside. D is considered 
positive if the dipoles are oriented so that the posi- 
tive end is inside the surface. It is instructive to 
derive this result for a crystallite using the methods 
of this paper. 

Consider a cubic crystallite of side l with n dipoles 
per unit area on the surface, so that the total number 
of dipoles is 6nl  2. Let the dipole consist of a charge q 
at a distance [(I/2) 2 + i 2 +j2]1/2 from the center (here 
i and j are coordinates on the surface) and - q  at a 
distance [(l/2 + 8l) 2 + i 2 +j2]~/2 from the center. The 
second moment of the charge distribution in the 
dipole layers is 

to = 6n12q[12/4 - ( l /2 + 6/) 2] 

~_ _ 6n i3qS l  

= - 6 1 3 D ,  (29) 
where on the second line we neglect 6l  compared to l 
(this corresponds to the limit of point dipoles) and D 
= n q S l  is the dipole moment per unit area. As the 
potential is essentially uniform inside the crystallite 
and falls essentially to zero outside (of. Fig. 6), we 
can equate dq~o for the crystallite to V(O)/l 3 and, 
from (8), we have, for the contribution from the 
dipole layer to @o: 

A~ o = - 27rw/313 = 47rD. (30) 

We can now see why the two bases of §3 gave 
different values for qbo [(16)]. Fig. 7 compares the 
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Fig. 5. Top: A layer of an octahedral charge distribution. Filled 
circle = 6q, open circles = - q .  Bottom: A layer of a crystallite 
made by repeating the octahedral charge distribution. Open 
circles = - q ,  lightly shaded circles = + q, heavier shaded circles 
= +2q. 
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Fig. 6. The potential (in units of  q/a), averaged over a square of  
side a, normal to the face of a crystallite such as that in Fig. 5. 
The crystallite is made from 21 x 21 x 21 units of  an octahedral 
basis of  Gaussian charges with r /=  0.2a. The dipole layer is 
between layers l0 and 11. The dotted line corresponds to ~o = 
47rq/a. 
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charge distributions for the two. The unit-cell 
description differs from the pseudo-atom description 
by a dipole layer that is positive on the outside and 
this gives a negative dipole-layer contribution to q~o, 
resulting in a lower value than that calculated for the 
pseudo-atom basis, i.e. @o~ < qbo2. As the dipole-layer 
term is independent of size, it will remain if one 
attempts to go to the limit of 'infinite' size. 

A real crystal terminates in atoms, rather than by 
an abrupt discontinuity in electron density, so the 
pseudo-atom description of (16b) is more appro- 
priate than the unit-cell description (16a). In general, 
the surfaces of crystals are not expected to be highly 
polarized and we make an order-of-magnitude esti- 
mate of A~o for a real crystal as follows. The density 
of atoms on a surface is typically 0.1-0.2 ~ -a .  If we 
make the generous estimate that associated with each 
surface atom there is a dipole moment of 0.1e x 
0.1,~, we have D =  0.015-0.03 V and A@0 = 
0.2-0.4 V; of the order of magnitude of experimental 
accuracy. Note that a layer 3/~ thick with D = 
0.03 V corresponds to a polarization of 0.01 C m-z,  
fairly typical of that found for ferroelectrics (Jona & 
Shirane, 1962). In what follows, we assume that the 
surface contribution d~0 = 0 and use (15b) to evalu- 
ate q0o for a pro-crystal or crystal, as is common 
practice. 

However, we call attention to the possibility of 
substantial dipole layers occurring on the surfaces of 
crystals in certain circumstances. Thus, if there were 
a monolayer of atoms of very different electro- 
negativity adsorbed on all the surface of a crystallite 
at low temperatures, the surface dipole moment 
could easily be very much larger than that estimated 
above and easily measurable effects should be found. 

Fig. 7. Comparison of two ways of assembling a crystallite from 
bases. Top: charge density in a crystallite of pseudo-atoms. 
Middle: the charge density as an assembly of unit cells. Bottom: 
the difference showing the surface dipole layer. The arrows 
indicate the positions of the nuclei of the pseudo-atoms. 

We suggest, therefore, that measurements of ~o 
could be a useful tool for surface scientists. Recall 
that A@o depends on the sign of the surface dipoles. 

5. ~o in real crystals: MgO, silicon and aluminium 

Magnesium oxide 

There have been numerous measurements of ~o 
for MgO by electron interferometry (Spence, 1993). 
Recently, an accurate value of 13.01 V, not subject to 
the experimental uncertainties of earlier work, was 
obtained (Table 1). For a pro-crystal made of neutral 
Mg and O atoms and a = 4.2115 A, one finds, from 
(9) and (14b) (see Appendix B for details), qo0 = 
18.43 V. 

Although MgO has been the subject of many 
theoretical studies, the only one we have found that 
reports data suitable for the evaluation of qSo is that 
of Boyer (1983). In his work, Boyer fitted the calcu- 
lated self-consistent muffin-tin electron density to 
a sum of spherical pseudo-ions, Mg 2+ and O 2-, 
described by Slater-type orbitals. From these data 
we calculate, again from (14b), @o = 12.85V, in 
excellent agreement with experiment. 

It should be remarked that the decomposition of 
the electron density into a sum of pseudo-atom 
densities is not unique. Boyer could presumably have 
fitted his calculated electron densities to a sum of 
neutral pseudo-atoms and it is certainly not correct 
to suppose that the observed @o supports a com- 
pletely ionic model for MgO. However, the large 
difference between the pro-crystal value of @o and 
the experimental one does illustrate that qOo is 
remarkably sensitive to bonding effects. 

To put the last point into perspective and to 
illustrate the power of electron-diffraction methods 
to probe bonding in crystals, we quote Zuo, Foley, 
O'Keeffe & Spence (1989) for the difference between 
the crystal and the pro-crystal: A Vooo = 26%, AFooo 
=0%, AVlll =44%, AFlll = 12%, AV2oo= 2%, 
AF200 = 1%. 

Silicon 

Undoubtedly the most accurate set of X-ray struc- 
ture factors that currently exists is for crystalline 
silicon. The most recent refinement (Deutsch, 1991) 
of the experimental data (Cummings & Hart, 1988), 
using an eight-parameter pseudo-atom and eighteen 
experimental structure factors, resulted in a goodness 
of fit of 1.2, implying that essentially all the informa- 
tion in the experimental data has been extracted. If 
q0o can indeed be obtained from pseudo-atom 
refinements of X-ray data, this example should pro- 
vide an excellent proving ground. Accordingly, we 
now use Deutsch's data to evaluate q~o for silicon. 
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The monopole part of the electron density (this 
part only is relevant to an evaluation of ~0) of the 
pseudo-atom is written as: 

p(r) = Z6(r) • p,(r) - E[x3p,(xi r) • pi(r)]. (31) 
i 

Here, the first term is the nuclear contribution and 
the sum is over the electron shells (K, L etc.). In the 
latter, the p,(r) are normalized probability densities, 
p,(r) is the contribution of each shell to the electron 
density of the free atom and the x; are fitted param- 
eters to allow for expansion (K, < 1) or contraction 
(xe > 1) of the shell. In the harmonic approximation 
(which was found to apply for silicon), the Fourier 
transform of the probability density is exp ( -  Blfl/4). 
The corresponding value of v(0) is 

v(O) = (2 7r/3 ) Y.(z,(r2)~o/ X~) - (ZB,,/4 7r) + 7.ziBJ4 ~r. 
i i 

(32) 

Here, z; is the charge in units of e in each shell (2e, 8e 
and 4e, respectively, for silicon) and (r2)i0 is the 
average value of r 2 in each shell of the free atom. 

In Deutsch's (1991) best fit [his model (e)], two 
separate harmonic temperature factors were refined. 
The first, Bi = B2 = 0.4585 (11) A 2, applied to the K- 
and L-shell electrons; the second, B3 = 0(0.11)/~2, 
applied to the M (valence) shell. We assume that B~ 
also applies to the nucleus (B, = B1). The other 
relevant parameters determined are Xl = 1 
(assumed), x2 = 0.9949 (6), K3 = 0.9382 (15). We use 
a cubic lattice parameter of a = 5.4310 ,~ and find 
from (32) ~o = 8v(0)/J2= 15.19 (5) V. The contri- 
bution from the last two terms (involving the thermal 
parameters) is -0 .11 (3)V. Note that, in the rigid- 
atom approximation (all B,. = B,), the temperature 
factor does not influence q%. 

The main difference, as far as v(0) is concerned, 
between the atom and the pseudo-atom is due to the 
expansion of the valence shell by about 6%. The 
effect of this expansion is shown in Table 2. The 
same expansion has been reported in previous analy- 
ses (Aldred & Hart, 1973; Price, Maslen & Mair, 
1978; Spackman, 1986) of the experimental data in 
terms of pseudo-atoms. 

In contrast to the value of @0 = 15.2 V calculated 
from the pseudo-atom parameters, the most reliable 
experimental value, which includes corrections for 
multiple scattering, is (Table 1) 9.26 V - a spec- 
tacular disagreement. 

Recall that essentially all the difference @0- 
• o(atom) comes from the apparent expansion of the 
valence shell.* On the other hand, the measured 
value of 9.3 V would require a large contraction of 
the valence shell. We believe that the apparent 

* An earlier measurement of  qOo = 11.5 (10) V for Si (Gaukler  & 
Schwarzer, 1971) also indicates a valence-shell contraction. 

Table 2. Contributions (in V) by shell to the average 
Coulomb potential in silicon calculated f rom the 

pseudo-atom refinement o f  Deutsch (1991) 

+ Thermal 
K L M Total  "term 

Free atom 0.014 1.228 12.360 13.603 
Pseudo-atom 0.014 1.241 (2) 14.042 (44) 15.30 (4) 15.19 (3) 

expansion of the valence shell is an artifact of the 
particular method (length scaling) used to fit the 
experimental data, and that this is the Achilles' heel 
of this particular approach to pseudo-atom 
refinement. This belief is reinforced by examination 
of theoretical results for aluminium metal, which we 
discuss next. We return to a further discussion of 
silicon in §6. 

Aluminium 

There have been at least two recent theoretical 
studies of metallic aluminium that have a bearing on 
the question of q%. Finnis (1990) modeled a pseudo- 
atom valence electron density by scaling the free- 
atom valence shell by a two-parameter contraction 
function S(r): 

S ( r )=  A/{exp[ f l ( r - rc ) ]+ 1}. (33) 

Here, A is a normalizing constant determined by/3  
and re. In the limit of large /3, this function corre- 
sponds to truncation of the valence shell at re, 
a procedure well established and tested for solids 
by electronic-structure theorists (e.g. Sankey & 
Niklewski, 1989). The parameters in (33) were 
determined from a comparison with first-principles 
electronic-structure calculations [for details see 
Finnis (1990)]. 

A related, but independent, theoretical investiga- 
tion was recently reported by Chetty, Stokbro, 
Jacobsen & Norskov (1992). These authors used 
pseudo-atom form factors made to fit calculated 
structure factors using a technique that allowed them 
to estimate low k values and reported an analytical 
(five-parameter) fit to the difference &f between the 
pseudo-atom and free-atom form factors. 

From the data presented in the above studies, we 
can calculate the difference, 64%, between q% for the 
crystal and for the pro-crystal constructed of free 
atoms. Remarkably, within the precision of the 
reported parameters, the same value is obtained in 
both instances and we find @0(pro-crystal)= 17.0 V, 
4%(crystal) = 12.7 V. Measured values for the crystal 
range from 11.9 to 13.0 V (Spence, 1993), in satisfac- 
tory agreement. 

In Fig. 8, we show 6f  for the models of Finnis 
(1990) and Chetty et al. (1992) as functions of k. 
Notice the excellent agreement in the neighborhood 
of k = 0. Also shown on the graph (points) are values 
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of &f for the lowest-order reflections of aluminium 
assuming that the Chetty et al. (1992) data are 
correct (we emphasize that these are not experi- 
mental data). If one were to attempt to fit these 
points using a scaled atomic valence distribution, one 
would have to use an expanded atom (x < 1), as also 
shown on the figure. Most importantly, the scaled 
electron distribution approaches k = 0  from the 
wrong side and predicts an increase (rather than a 
decrease) in qbo over the pro-crystal value [recall that 
&v(0), and hence &q0o, is proportional to the negative 
of the curvature of &ilk) at the origin, from (10)]. 

Fig. 9 shows the corresponding direct-space rep- 
resentation of the same data given as radial distribu- 
tions R(r) = 47rr2&p(r). Notice the opposite behavior 
of the expanded atom (K = 0.9) and the Finnis (1990) 
and Chetty et al. (1992) models and the complicated 
behavior near the origin, which is the most impor- 
tant region for k ~ 0 diffraction. 
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Fig. 8. The difference in form factor (pseudo-atom minus atom in 
units of  e) for aluminium from the theoretical data of  Finnis 
(1990) and Chetty et al. (1992) (CSJN) as a function o f k  (/~-1). 
The open circles mark positions of  structure factors for f.c.c. 
metallic aluminium starting from the left with 111 (see text). 
The curves marked x = 0.9 and x = 0.8 are for pseudo-atoms 
constructed from length-scaled atoms. 
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Fig. 9. The same functions as in Fig. 8, shown as radial distribu- 
tions R(r) = 4rcr2&p(r) in direct space. Units are R in e A,-t and 
r i n A .  

It is also rewarding to examine the ratio of the 
pseudo-atom and free-atom valence-electron densi- 
ties shown in Fig. 10. Close to the nucleus, this is a 
rather complicated function due to the nodal struc- 
ture of 3s and 3p wave functions [the Finnis (1990) 
function is, of course, uniformly smooth and the 
ratio is just S(r) in (33)]. We find the Chetty et al. 
(1992) curve very suggestive. Electron density is 
removed from both the outer parts of the atom 
(reducing q00) and near the origin (reducing low- 
order structure factors), and 'bunched' in between. 
We propose that a function that plays such a r61e 
might be appropriate for pseudo-atom refinements of 
structure factors in which q0o is included as an addi- 
tional observation. A suitable two-parameter func- 
tion might be S ( r ) = A / ( 1 - b r + c r 2 ) ,  with b and c 
adjustable parameters and A a normalizing factor. 

6. The information about ~Po in silicon structure 
factors 

Structure factors for silicon have been the subject of 
innumerable theoretical and experimental investiga- 
tions, with recent contributions representing the cur- 
rent state of the art for both aspects. Here we assess 
the information content of the experimental data and 
the relevance of theoretical calculations. The experi- 
mental data to which we will refer are those sum- 
marized by Cummings & Hart (1988), together with 
the 'forbidden' 222 structure factor (Alkire, Yelon & 
Schneider, 1982). These 18 data, which have esti- 
mated standard deviations of 1-5 × 10-3e a tom-]  
are listed in Table 1 of Lu & Zunger (1992). 

Early theoretical electronic structure studies of 
crystalline silicon were summarized by Spackman 
(1986), who pointed out that these typically gave R 
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Fig. 10. The ratio of  the electron density of  the pseudo-atoms of  
Figs. 8 and 9 to the free-atom electron density for aluminium as 
a function of  distance from the nucleus (r in/~). 
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= 1% where R = Y. Fobsl- IFcalcll/ElFobs. To put this 
in perspective, we note that, for the 18 F mentioned 
above and using a pro-crystal of Hartree-Fock 
atoms (Clementi & Roetti, 1974) to calculate struc- 
ture factors, we obtain R = 0.76%, so that the pro- 
crystal is a better approximation to the real crystal 
than the calculated ones. 

Recently, Lu & Zunger (1992) have reported what 
is possibly the most accurate electronic structure 
calculation for crystalline silicon to date; this results 
in R = 0.21%, a very significant improvement. How- 
ever they argue that the finer details of the electron 
distribution can only be revealed from a Fourier 
synthesis that involves a very large number of terms 
and this claim needs careful evaluation. Lu and 
Zunger's calculated structure factors differ from the 
experimental data by as many as 20 standard devia- 
tions for the crucial low-order reflections, presum- 
ably owing to approximations made in the 
calculations. If the first four structure factors (111, 
220, 311 and 222) are excluded, their R is 0.23% and 
that for the Hartree-Fock pro-crystal is 0.27%, so, 
on an absolute basis, the pro-crystal is virtually 
equivalent to the calculated one for the higher 
orders. However, interest usually focuses on defor- 
mation density obtained from a synthesis of Fcrysta~- 
Fpro-crystal. If the systematic errors in theoretical cal- 
culations (which are very precise, if not very accurate 
compared to measurement) largely cancel each other 
out, then fine detail in high-order syntheses may be 
significant, but this remains to be demonstrated in a 
rigorous manner. 

It is also important to keep in perspective the 
practical realities. In Fig. 11, we show the difference 
in the calculated structure factors (Lu & Zunger, 
1992) for the crystal and the pro-crystal, DF (= F¢a~¢ 
-Fsup in Lu & Zunger's notation), as a function of 
H. It may be seen that the difference is less than 
3 x 10 -3 e a tom-  ~ after 12 reflections. As experimen- 
tal data are subject to errors of at least this magni- 
tude, it should be clear that experimental data 
beyond this point contain no information about the 
electron redistribution after bonding and will only 
contribute noise to deformation-density maps (they 
do, of course, contain valuable information about 
thermal parameters). The same conclusion was 
reached on the basis of an error analysis of silicon 
deformation-density maps by Maslen (1988), and in 
a slightly different context by Zuo, Spence & 
O'Keeffe (1988, 1989). 

The deformation clenslty in silicon is determined 
from a Fourier synthesis o f / i F  = F-Fa tom , where F 
is the measured structure factor and Fatom refers to 
the pro-crystal. Let us further write F =  F~p + Fn~, 
where Fsp is the contribution from the spherical part 
of the fitted pseudo-atom and Fn~ is that from the 
non-spherical part. Again using Deutsch's (1991) fit, 

it is found that Fsp- Fatom (in 10-3e  atom -1) are 
111: - 181; 220: - 72; 311: - 32; 220: 0; 400: - 2; 
331: 2. Thus, essentially, only the first three reflec- 
tions give information about how the radial part of 
the pseudo-atom differs from the free atom. This is 
in accordance with Lu & Zunger's (1992) observa- 
tion that a synthesis of Fns already gives the essential 
details of the deformation density in the valence 
region (including the peak height in the mid-bond 
region). 

We conclude, therefore, that for silicon only about 
12 experimental structure factors give information 
about the differences between pseudo-atom electron 
densities and those of free atoms, and that only a 
small part of these structure factors gives informa- 
tion about the radial part of this difference. Thus, 
only one parameter can be realistically refined for 
this part from X-ray data. For other materials, with 
less-accurate structure factors available, the situation 
is even more restricted. 

In Fig. 12, we show the contributions to f(H) of 
the various shells of the Clementi & Roetti (1974) 
silicon atom. Recall (10), which shows that v(0) (and 
hence ~0) is determined by the curvature of f (k)  at 
the origin. The figure illustrates that, as is well 
known, the valence electrons contribute mainly to 
the small k part but also that they dominate the 
curvature at k = 0. Confronted with just the points 
presented in the figure, one would conclude that 
anything more than an order-of-magnitude estimate 
of this curvature was impossible. The data also show 
that attempting to refine s and p populations is 
unlikely to be useful. 

In the light of tlae above remarks, it should be 
clear that @0, as measured by electron diffraction, 
provides important extra information about the 
radial part of the valence electron density that is not 
available from X-ray diffraction data. In particular, 
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Fig. 11. DF = the difference between calculated (Lu & Zunger, 
1992) structure factors (in 10-3e atom-~) for crystalline silicon 
and for free atoms as a function of H (in A-~). The dotted lines 
are at +-3 x 10 -3 e. Note that three points fall outside the range 
of the graph. 
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a two-parameter fit of the radial part of the valence 
electron density of silicon should be possible with the 
additional observation provided by 40. Note that 
this extra information does not come from high- 
order structure factors but from information at 
H = 0 .  

7. Concluding remarks 

With recent developments in electron holography 
(Tonomura, 1987) and of methods for properly 
taking into account dynamical effects in electron 
diffraction (Spence & Zuo, 1992), it is anticipated 
that accurate values of 4o will soon be available for a 
variety of materials. We note that possible effects of 
surface dipole layers must be carefully evaluated; 
indeed, in appropriate systems with deliberately 
adsorbed surface layers, measurements of 40 could 
be used to determine the density and sign of surface 
dipoles. 
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Fig. 12. The form factor (in e atom -~) for the Clementi & Roetti 
(1974) Si atom at points corresponding to reciprocal-lattice 
vectors of crystalline silicon as a function of H (in A- t). In (a), 
open circles represent the total and filled circles the core contri- 
bution. In (b), open circles represent the 3s contribution and 
filled circles the 3p contribution. 

The examples we have considered show that 4o is 
very sensitive to bonding effects in crystals and 
provides a stringent constraint of model valence- 
electron densities. We urge electronic-structure theo- 
rists who calculate structure factors to include V(0) 
(and hence 40) in their considerations as it will 
provide powerful tests of both theory and experiment 
which are so far lacking. 

We note that, in all cases where accurate values 
are available, 4o is less than the pro-crystal value. 
This suggests that as a general rule the valence- 
electron density is contracted when atoms combine to 
form crystals. 

Finally, we conclude that it is not possible (when 
confronted with the reality of experimental 
uncertainties) to get reliable information about the 
missing V(0) from measured F(H) [or V(H)] for 
nonzero H. The implication is that diffraction data 
do not give all the information about valence- 
electron distributions that is available when the data 
are supplemented with knowledge of 4o. Therefore, 
we suggest that future pseudo-atom refinements use 
the measured value of 40 as an additional observa- 
tion when it is available (as for silicon). 
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APPENDIX A 

A note on sum rules for structure factors 

Substitution of (22) for p(r) in (16a) gives, for a 
crystal with pseudo-atoms at the points of  a simple 
cubic lattice, 

401 = ( -  2zr/3y22)Xfa(H) f r 2 exp ( -  27rill • r)dr. 
H cell 

(A1) 

The value of the integral in this expression must be 
determined using the same origin as is used for the 
structure factor. 

We take the origin on the atom and integrate over 
the range -a/2<_x,y,z<_a/2.  The value of the 
integral is (-1)haS/27r2h 2 for H = ha* or hb* or hc* 
(h an integer) and zero otherwise, and 

4Ol =(--2/'rra)~'.(--1)hf,~(h,O,O)/h2. (A2) 
i 



44 A V E R A G E  COULOMB POTENTIAL A N D  ELECTRON DENSITY IN CRYSTALS 

This is just a special case of the more general sum 
rule given by equation (48) of Becker & Coppens 
(1990). We saw in Fig. 2 that, in the limit of a large 
unit cell, ~ O l  =-Qqb02 = v(0) for an atom. Writing 
fa(k) = Z-f~l(k),  where Z is the nuclear charge and 
fel(k) is the electronic form factor, and using 
Y ( -  1)H/n 2 = - rr2/12, we get, from (A2), for an atom 
or pseudo-atom: 

= l im ((2d2/Tr)~(Zvr2/12) v(0) 
d---.) ~ \ l .  

+ E [ ( -  1)~f~,(n/d)/n 2 , (A3) 
n=l 

which is equivalent to Shinohara's (1932) formula 
for (r2). There was at one time considerable debate 
(e.g. Miyake, 1940) about the appropriate value of d 
to use in (A3). Fig. 2 answers that question. 

From (4), it may be seen that (A3) may also be 
written 

v(0) = 21imd__,oo [n~__~l ( -  1)"+Iv(n/d)]" (A4) 

The same expression is true for a large class of 
functions g(z) for which g(0) is finite and which 
approach zero asymptotically. It can equally be used 
to get f(0) from atomic form factors f (k) .  Its his- 
torical significance (Miyake, 1940) lies in the fact 
that v(0) is given accurately for modest d. In the case 
of a silicon atom, both frO) and f(0) are given to 
better than 1% for d = 6 A. In general, functions for 
which g(dZg/dz 2) is negative when Ig[ is large have 
this property of rapid convergence to the limit with 
d. Note that the electron density p(r) and Coulomb 
potential ~0(r) for an atom are not examples of such 
functions. 

In contrast, the Becker & Coppens sum rule [equa- 
tion (48) of Becker & Coppens (1990)] is an exact 
rule for sums on v(k) yielding (~Ol (a well defined 
quantity) for a definite choice of d (the unit-cell 
edge). We remark that the same difficulties attend on 
obtaining ~Ol from X-ray diffraction data as on 
obtaining ~0. 

APPENDIX B 

Use of Slater-type orbitals to obtain v(k) for small k 

Difficulties in the practical determination of v(k) for 
atoms when k is small were recently discussed by 
Peng & Cowley (1988). For atomic wave functions 
described by Slater-type orbitals, the procedure is 
straightforward. Continuing the expansion (7) of v(k) 
for a spherical atom, we get 

v(k) = (27rZ(r2)/3) - (Z/Tr) 
o o  

x y. [ ( -  1)"(27r)z"(rZ")k2"-2/(2n+ 1)!]. (B1) 
n=2 

A spherically averaged atomic orbital expressed as 
a sum of Slater-type orbitals is 

q~p = ZAp,Rp,, (B2) 
i 

where 

Rp~ = r",,- ' exp ( -  (pir), (B3) 

A p  i . _  (1/2~t/2)cp,[(2np,)! ]-  l/2(2~i)nm+ 1/2. (B4) 

Values of npi, Cpi and (p; for atoms and some ions 
with Z _  54 are given by Clementi & Roetti (1974). 

Let the occupancy of the pth orbital be Op and Apo 
= Ap~Apj, (po = (pi + (pj and npo. --- npi q- npj. Then, 

. Xl/~,'np.+m+ 1]. (B5) Z(r~)=4zrZOpY~ZApo[(npu + m)./apo 
• . 

p t j 

The use of a minimal set of Slater-type functions 
with one exponent per orbital ('single zeta') is 
inadequate to determine v(0). For silicon, the 
Hartree-Fock wave function of Clementi & Roetti 
(1974) gives v(0) = 272.4 V A3; the single-zeta wave 
function of the same authors yields v(0)= 
236.8 V A 3. The value calculated from the electron 
scattering factor for silicon, fn(0)= 5.828 A, in 
International Tables for  Crystallography (Cowley, 
1992) is v(0) = 5.828 x 47.88 = 279.0 V A 3. 
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Abstract 

Two analytical approximations currently used for 
evaluating scattering factors for electrons, from a 
relativistic Har t ree-Fock atomic potential and 
following the first Born approximation, are 
systematically studied. It is shown that their devia- 
tions from the scattering factors directly derived 
from the numerical Fourier transform of the 
potential vary with the spatial frequency and that 
these deviations are sufficiently large to introduce 
perceptible differences in the simulated image 
features, especially when strong multiple scattering 
occurs. In order to use better scattering factors and 
improve image interpretation, a new simple method 
combining both analytical approximations is sug- 
gested. For  the first time, a more sophisticated 
atomic potential, a relativistic Har t ree-Fock-Sla ter  
model, is also considered in the calculations. The 
importance of  using accurate scattering factors in 
H R E M  image simulation is pointed out, particularly 
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for future quantitative microscopy with the new ultra 
high resolution electron microscopes. 

Introduction 

In high-resolution electron microscopy (HREM),  the 
calculation of  atomic scattering factors for electrons 
is required for the interpretation of the images, 
which is based on comparison with computer simu- 
lations. The routine calculation is based on an 
analytical approximation: the scattering-factor curve 
is fitted to sums of several Gaussian functions of  the 
form 

n 
f ( g )  = Z a i e x p ( - b i g  2/4) + c, (1) 

i=l  

where the coefficients ai, bi and c differ from one 
atom to another and g is the spatial frequency. With 
suitable scaling of  the corresponding coefficients, f ( g )  
may be the scattering factor for electrons (fe) or for 
X-rays (fx) (Vand, Eiland & Pepinsky, 1957; Smith & 
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